Abstract
Fat and protein content of milk measurements from first to fifth lactations of Iranian Holstein cows were analysed using repeatability and several pre-structured repeatability models that varied in additive genetic variance structure and fitted heterogeneous residual co (variance). For this research, a total of 257 197 fat and 218 688 protein records were used. The records were measured on 116 531 cows born between 2010 and 2014. The animals originated from 2355 sires and 91 212 dams. Pre-structured repeatability models with heterogeneous residual co (variance) and the respective genetic variance structure were the best models for genetic analysis of the fat and protein data. The results derived from these models showed that heritability of both fat and protein are decreased from first to fifth lactations. Heritability of fat measured at first, second, third, fourth and fifth locations were between 0.10 and 0.19 and those for protein were between 0.07 and 0.24. Moderate to high phenotypic correlations were estimated between the repeated records of the fat and protein. Values of 0.13 and 0.16 were estimated for heritability of fat and protein using repeatability model. Phenotypic correlations among the repeated records of fat and protein were estimated to be 0.30 and 0.33, respectively when this model was applied. The results showed the genetic variance, heritability and phenotypic correlation of the fat and protein are changed over the lactations but the genetic parameters derived from the repeatability model are homogenous whereas in both models unity genetic correlations are assumed among the repeated records. The results of this study show that the repeatability model is not an appropriate model for genetic analysis of the repeated records of fat and protein in the population investigated and can be improved when pre-structured repeatability model is used. In the present study homogenous genetic covariance was assumed among the fat and protein taken at the different lactations which can be modelled in future studies for more improving the models.
Subject
Animal Science and Zoology,Food Science