Leaching and degradation of triasulfuron, metsulfuron-methyl, and chlorsulfuron in alkaline soil profiles under field conditions

Author:

Sarmah A. K.,Kookana R. S.,Alston A. M.

Abstract

A field study was conducted on an alkaline cropping soil (plot size 4 m by 1 m), representative of cereal growing regions in southern Australia, to examine the degradation and leaching behaviour of triasulfuron, metsulfuron-methyl, and chlorsulfuron (150 g a.i./ha), along with a non-reactive tracer (KBr, 50 kg/ha), under 2 water treatments (‘rainfall’ and ‘rainfall + irrigation’). The results showed that the distributions of water content, Br– , and the 3 herbicides were influenced by the amount of rainfall/irrigation received, and the biological activity as well as the physico-chemical properties of the soil within the profile. The largest concentrations of Br– were detected in the 10–20 cm depth under both treatments. No additional peak of Br– was observed in the plots which received only rainfall; however, there was another peak at 100 cm depth after a cumulative rainfall and irrigation of 158 mm. The spatial distribution of Br– in the plots was attributed to preferential flow through cracks or the presence of ‘mobile’ and ‘immobile’ water, which gave rise to bimodal distribution in the profile. Metsulfuron-methyl showed the greatest mobility, followed by chlorsulfuron and triasulfuron under both the treatments, with metsulfuron-methyl being detected at 120 cm depth under rainfall + irrigation. A bimodal distribution was also observed for the 3 herbicides, but the location of peaks was dependent on the solute. Rates of degradation of the herbicides could be described reasonably well with first-order reaction kinetics (r2 = 0.72–0.91). The half-lives for triasulfuron, metsulfuron-methyl, and chlorsulfuron were 44, 45, and 32 days, respectively, under rainfall (69 mm), and 46, 59, and 48 days under rainfall + irrigation (158 mm).

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3