Modelling seasonal and diurnal dynamics of stomatal conductance of plants in a semiarid environment

Author:

Gao Qiong,Yu Mei,Zhang Xinshi,Xu Hongmei,Huang Yongmei

Abstract

Seasonal and diurnal stomatal conductance, leaf transpiration, and soil water contents of two shrubs of Hippophae rhamnoides L. subsp. Sinensis Rousi and Caragana korshinskii Kom., two trees of Malus pomila Mill. and Robinia pseudoacacia L., and a forb, Artemisia gmelinii, were measured in field of the semiarid Loess Plateau, north China, during the growing season of 2002. We developed a dynamic, nonlinear semi-mechanistic model to relate stomatal conductance of these plants to soil water potential, incident photon flux density, vapour pressure deficit, and partial CO2 pressure, on leaf surface. The model can be easily adapted to ecosystem simulation because of its mathematical simplicity. Guard-cell osmotic pressure at zero light intensity, apparent elastic modulus of guard cells per leaf area, half-saturation light intensity, maximum light-inducible osmotic pressure, soil-to-leaf resistance at zero plant water potential, sensitivity of soil-to-leaf resistance to xylem water potential, and plant body water capacitance, are independent parameters of the model. The model was fitted to the field data of the five species with a non-linear least-square algorithm to obtain the parameters. The result indicates that the model explained, on average, 88% of seasonal and diurnal variation of stomatal conductance for the five species, in comparison with 67% of variation explained by an early model without plant body water capacitance. Comparisons of the physiological parameters among the species show that the woody species exhibited more tolerance for water stresses than the forb because of their higher dark osmotic pressure, greater capability of seasonal and diurnal osmotic regulation, and stiffer guard cell structure (or smaller stomatal density or both). A decreasing trend of soil-to-leaf resistance from the trees to the shrubs to the forb was found in this study. Midday depression of transpiration and stomatal conductance may or may not occur, depending on the magnitude of body water capacitance.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3