Effects of method and timing of nitrogen fertilizer application on irrigated maize growth and nutrient distribution in soil

Author:

Bacon PE,Thompson JA

Abstract

The growth and nitrogen uptake of a maize crop (Zea mays) were studied under furrow irrigation on a red-brown earth soil. Plots receiving 120 kg N/ha as urea at sowing were compared with unfertilized plots and with plots receiving the same amount of nitrogen, as urea or aqua ammonia, added to water during three irrigations: in the first or last 2 h of three 6-h irrigations (at 20 kg N/ha.h), or continuously during three 6-h irrigations (6.7 kg N1ha.h). Dry matter accumulation and nitrogen uptake measurements made 21,36,49,84 and 150 d after emergence all revealed a consistent pattern of results. The same pattern was also evident in grain yield. Urea-fertilized plots gave higher yields (mean of the three application methods = 3.2 t/ha) than ammonia-fertilized plots (1 .8 t/ha). Application early in the irrigation was superior to application throughout irrigation (3 .2 and 2 .5 t/ha, respectively), while plots receiving nitrogen late in the irrigation gave the lowest yield (1 .8 t/ha). There was no significant (P< 0.05) difference between yield from plots receiving urea early in irrigation and that from those receiving urea at sowing. Soil nitrate-nitrogen concentrations below the hills were higher for urea treatments, suggesting greater penetration of the urea solution. In the ammonia treatments, a much higher concentration of ammonium-nitrogen was found immediately under the furrow than under the furrows of urea-fertilized plots, confirming the relatively restricted movement of ammonia into the soil. Ammonia concentration of the irrigation water fell by up to 32% over a 90 m length of furrow. This loss was ascribed to volatilization. Urea was superior to ammonia largely because it minimized mineral nitrogen retention near the soil surface and because it was not susceptible to volatilization losses. Fertilizer application early in the irrigation, during the period of high infiltration, resulted in lower retention of mineral nitrogen close to the furrow surface and away from the root zone. It also reduced the proportion of nutrient solution lost to the drainage system.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3