Photosynthesis and Transpiration of Pinus Radiata D. Don Under Plantation Conditions in Southern Australia. Ii. First-Year Seedlings and 5-Year-Old Trees on Aeolian Sands at Rennick (South-Western Victoria).

Author:

Attiwill PM,Squire RO,Neales TF

Abstract

Measurements of net CO2 assimilation and transpiration rates were made over 4 days in the field in February 1980, on first-year seedlings and 5-year-old trees of Pinus radiata growing in plantation conditions in SW. Victoria. Gas exchange, enclosure, methods were used. Very high needle temperatures (to 45�C) and vapour pressure differences (to 70 mbar) were encountered. Watering treatments allowed estimates to be made of the effect of existing soil water deficits. The maximum rates of assimilation observed were 3.78 �mol CO2 m-� s-� in the watered seedlings and 3.15 �mol m-� s-� in the unwatered tree. These values are 40% less than has been recently reported for P. radiata in New Zealand but agree with other data for P. radiata and other conifers. The light saturation of net photosynthesis occurred at c. 350 W m-�. Increase in needle-air vapour pressure difference reduced needle conductance. Decrease of needle temperature and of vapour pressure difference from very high values, due to a rapid drop in air temperature, was accompanied by an increase of assimilation rate and of needle conductance, confirming that needle temperatures above about 30�C are supraoptimal for P. radiata. Watering increased assimilation rate, needle water potential and needle conductance. This was most apparent in the seedlings; the responses of the older trees were much less marked.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3