A dual source gamma ray traversing mechanism suitable for the non-destructive simultaneous measurement of bulk density and water content in columns of swelling soil

Author:

Bridge BJ,Collis-George N

Abstract

A traversing mechanism is described in which 100 mCi sources of americum-241 and caesium-137 are alternately brought into line with a sodium iodide (thallium) scintillation counter connected to a single-channel pulse height analyser equipped with two preset base lines. The equipment is capable of scanning a 10 cm diameter soil column equipped with sensors to a height of 200 cm, and facilities are provided for automatic indexing at preset intervals to an accuracy of 0.01 cm. Non-linear counting losses in the spectrometer system are described, and were found to be dependent on the window setting of the pulse height analyser. With the window setting adjusted to cover the apparent spread of the gamma peak, counting losses were negligible. Mass absorption coefficients of various materials were obtained using a compartmented box. Measured mass absorption coefficients of water, silica sand, and a chernozemic soil were 0.201, 0.247, and 0.303 cm2 g-1 respectively for americum-241, and 0.0826, 0.0746, and 0.0728 respectively for caesium-137. The precision of the apparatus was demonstrated by determining the moisture characteristic and bulk density characteristic of 0.5-1.0 mm aggregates of Narrabri soil during absorption and desorption. Gamma ray attenuation measurements and direct volumetric measurements were comparable. The standard deviations in the gamma ray measurements were found to be 0.03 g cm-3 for bulk density and 0.04 cm3 cm-3 for water content. Most of this inaccuracy arose from lack of precision in the americum-241 mass attenuation coefficient for the soil. By contrast, changes in moisture content and bulk density, at any level, of 0.004 cm3 cm-3 and 0.004 g cm-3 respectively, were statistically very significant.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3