Wetland soil carbon storage exceeds uplands in an urban natural area (Florida, USA)

Author:

Bennett Jennifer D.,Chambers LisaORCID

Abstract

Context Urban greenspaces and natural areas are often recognised for their cultural services, but may also provide ecological services, including carbon (C) sequestration and storage. Aims This study investigated the strength of the relationship between easily discernable ecosystem characteristics (e.g. topographic position, vegetation, and soil type) and soil C storage, and evaluated common conversion factors and methodologies used in soil C inventories. Methods Sixty-seven full-depth (up to 5 m) soil cores were collected across nine community types in University of Central Florida’s Arboretum (Orlando, Florida, USA) and were analysed for bulk density, organic matter (OM) content, total C, and total nitrogen (N). Key results Wetlands stored an average of 16 times more C than uplands and C density increased with soil depth. A 70% underestimation of soil C stocks would have occurred if sampling stopped at 50 cm. A strong linear relationship between soil C and OM supports the use of a 0.56 (C:OM) conversion factor for estimating soil organic C. Conclusions The presence of wetlands is the key predictor of soil C and N storage, but the magnitude of storage varies widely among wetlands. Overall, the 225-ha study area stored 85 482 ± 3365 Mg of soil C. Implications Urban natural areas should be evaluated for their ecosystem services separately from their surrounding developed land use/land cover with consideration for C storage potential. Leveraging topographic position, a site-specific soil OM conversion factor, and depth to refusal testing can increase the accuracy and cost-effectiveness of soil C inventories.

Funder

University of Central Florida

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3