Simulation of soil organic carbon and nitrogen changes in cereal and pasture systems of southern Australia

Author:

Carter MR,Parton WJ,Rowland IC,Schultz JE,Steed GR

Abstract

Maintenance and improvement of soil organic matter levels is an important concern in dryland farming systems of temperate regions. The Century soil organic matter model was used to simulate changes in soil organic C and total N under long-term wheat (Triticum aestivum L.) and pasture rotations at five sites in southern Australia. Average declines in soil organic C and total N of 14 and 10%, respectively, in continuous and wheat-fallow systems over a 10 to 20 year period were closely simulated by the model at each site. Additions of N fertilizer (80 kg N ha-1), which prevented soil organic matter decline in continuous wheat systems, was also well represented by the model. Trends in soil organic matter under long-term legume pasture were not adequately simulated by the model, probably due to the 'annual' nature of subterranean clover (Trifolium subterranean L.) in dry seasons and subsequent changes in the ratio of live to dead plant biomass and shoot to root ratios. Overall, the study emphasizes the importance of adequate total plant C production to prevent a decline in soil organic C.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3