Energy dissipation in C3 plants under drought

Author:

Flexas Jaume,Medrano Hipólito

Abstract

A general quantification of the relative contribution of different light energy dissipation processes to total dissipation under different drought conditions is lacking. Here we compare six studies, including enough data for such a general quantification, to build up a general pattern of the relative importance of several energy dissipation mechanisms in response to drought in C3 plants. Such a general pattern apparently emerges independently of specific acclimation to drought, but largely dependent on CO2 availability in the chloroplasts, which may be regulated under drought by adjustments in stomatal and mesophyll conductances. Under irrigation and saturating light, more than 50% of absorbed light is thermally dissipated, while photosynthesis dissipates 20–30% and photorespiration 10–20%. Under mild drought, the contribution of photosynthesis decreases, and that of photorespiration increases in a compensatory manner. During moderate to severe drought, the contribution of both photosynthesis and photorespiration decreases, and thermal dissipation increases up to 70–90% of the total light absorbed. The contribution of other processes, like the Mehler reaction, is shown to be very low under both irrigation and drought. Therefore, in C3 plants subjected to different degrees of drought, more than 90% of the total energy absorbed by leaves is dissipated by the sum of thermal dissipation, photorespiration and photosynthesis.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3