Herbicide use, productivity, and nitrogen fixation in field pea (Pisum sativum)

Author:

Drew E. A.,Gupta V. V. S. R.,Roget D. K.

Abstract

Grain legumes grown in low-rainfall (<300 mm per annum) cropping regions of southern Australia have at times failed to provide the rotational benefits observed in other regions, such as improved cereal yields in the season following a legume. ‘In-crop’ herbicides were identified as one possible factor that may have been negatively affecting the legume–rhizobia symbiosis. To test this hypothesis and identify possible mechanisms behind any observed effects, field trials were conducted at Waikerie (South Australia) in 2001, 2003, and 2004. Field pea (Pisum sativum L.) was grown and treated with one of several herbicides 5 weeks after sowing. Crop yellowing, biomass, nodulation, and nitrogen (N2) fixation were assessed 3 weeks after spraying, and biomass, yield, percent nitrogen derived from fixation (%Ndfa), and N2 fixation (2003, 2004) were assessed at the end of the season. Some herbicides stunted plant growth and caused crop yellowing 3 weeks after application; however, none of the herbicides affected N nutrition of peas. Despite this, in 2003, half of the herbicides assessed reduced the %Ndfa by 34–60% relative to unsprayed control plots. Herbicide effects on the measured parameters followed similar trends over each year of the 3-year study. However, effects were rarely significant in 2004 as the trials were primarily affected by low rainfall, indicating that environmental parameters play a key role in determining the severity of herbicide effects on symbiotic N2 fixation. The possible mechanisms behind herbicide-induced damage to the pea–rhizobium symbiosis are discussed, including reduced photosynthetic capacity of plants exposed to herbicides.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3