Consequences of rainfall during summer - autumn fallow on available soil water and subsequent drainage in annual-based cropping systems

Author:

Dolling P. J.,Fillery I. R. P.,Ward P. R.,Asseng S.,Robertson M. J.

Abstract

This paper investigates factors controlling soil water content changes during the non-growing summer–autumn season or fallow (December–May) in annual farming systems in southern Western Australia. This was achieved by examining variation in available soil water storage to a depth of 1.0–1.5 m at 3 sites within 13 seasons. Reasons for the variation were examined using the Agricultural Production Systems Simulator (APSIM). This paper also investigated whether water accumulation during the summer–autumn period (fallow) contributed to drainage during the following growing season (May–November). This was achieved by determining the relationship between soil water content at the end of the fallow period (1 May) and the amount of drainage below 2.5 m by using APSIM coupled to historical weather records at 3 locations. At the end of the fallow, 24 mm (or 25%) of rain falling during the fallow was retained in the soil. Evaporation was the main loss of soil water during fallow periods (mean of 60 mm). Other losses included transpiration from plant cover (mean of 12 mm) and drainage below the root zone and runoff (combined mean of 13 mm). Evaporation and transpiration losses of soil water were concentrated in the surface 0.3 m. The use of APSIM to determine changes in the soil water content during the fallow indicated the importance of plants to soil water losses, the potential for higher evaporation than previously reported, and the possibility of an extended period (4–6 weeks) of drainage in sandy soils after large rainfall events (>50 mm). Soil water accumulation during the fallow period had a significant effect on simulated drainage under wheat in the following growing season. By the end of fallow there was limited ability of the soil to store water before drainage occurred due to rainfall during the fallow and the small soil water deficit under annual farming systems (1–67 mm). A 1-mm increase in soil wetness at the end of the fallow resulted in a 0.7–1-mm increase in simulated drainage during the growing season.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3