Case studies of atmospheric rivers over China and Australia: new insight into their rainfall generation

Author:

Chen Jingjing,Zhang Huqiang,Ye Chengzhi,Chen Hongzhuan,Mo Ruping

Abstract

While the Australia–Asian (A-A) monsoon is a prominent feature of weather and climate in China and Australia, there are significant differences in their dominant weather patterns and climate drivers. In order to explore different characteristics of atmospheric rivers (ARs) affecting weather and climate in these two countries, this paper compares two typical AR events that occurred in the boreal summer (austral winter) in 2016. The event in China produced record-breaking rainfall in North China, whereas the event in Australia was accompanied by a classic Northwest Cloud Band (NWCB) and produced a rainfall belt across the continent. Using global reanalysis products and ground-based observational data, we analysed the synoptic backgrounds, vertical structures, water vapour sources and relationship between ARs and cloud distributions. In both China and Australia, heavy precipitation was triggered by strong water vapour transport by ARs ahead of midlatitude frontal systems. The main differences between these two AR events and their associated rainfall effectiveness were that (i) the AR intensity in the Asian summer monsoon was stronger than that in the austral winter season over Australia; (ii) the centre of AR maximum moisture transport in China was around 850hPa, whereas in Australia, it was located at around 700hPa; and (iii) the AR-induced rainfall was heavier in China than in Australia. These differences were caused by numerous factors, including a lack of topographic influence, a dry climate background in Australia, and different interactions between warm and moist air conveyed by ARs from the tropics with cold air from the midlatitudes. We paid particular attention to the relationship between the Australian AR and its associated cloud structure and rainfall to understand precipitation efficiency of the NWCB. In addition, we assessed the forecast skills of an Australian numerical weather prediction system (ACCESS-APS2) for the two events with different lead times. The model produced reasonable forecasts of the occurrence and intensity of both AR events several days in advance, and the AR forecast skill was better than its forecasts of rainfall location and intensity. This demonstrates the value of using AR analysis in guiding extreme rainfall forecasts with longer lead time.

Publisher

CSIRO Publishing

Subject

Atmospheric Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3