Assessing the aquatic metabolic-balance response to future condition in a Mediterranean site: from an experimental-design perspective

Author:

Lozano Ismael L.ORCID

Abstract

Context Metabolic balance determines whether an ecosystem acts as a source or sink of carbon dioxide (CO2) and considering that a substantial portion of inland aquatic ecosystems act as a source of CO2 to the atmosphere, it is important to highlight that there is still no agreement on how global change will affect the ecosystem metabolic-balance response. It then becomes more important to study the interactions between global-change drivers and aquatic metabolism. Aims Assess possible shifts in ecosystem metabolic balance owing to global-change factors. Methods Collapsed factorial designs and novel experimental units have been used to study responses to future conditions. Key results In the study site, bacterial production was not affected by an increased temperature alone; however, increased nutrient availability may unmask UV or CO2 as a source of stress to bacteria. A synergistic effect between temperature and the combined effect of nutrients and CO2 on primary producers was also found. Conclusions In future scenarios, some heterotrophic inland water ecosystems may shift from heterotrophic to autotrophic states and therefore act as CO2 sinks. Implications This study provides a framework to support a deepening of knowledge on this topic.

Publisher

CSIRO Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3