Proximate Composition of Australian Sea Lion Milk Throughout the Entire Supra-Annual Lactation Period

Author:

Gales NJ,Costa DP,Kretzmann M

Abstract

A total of 87 milk samples was collected from 47 Australian sea lions, Neophoca cinerea, with pups ranging from one day old to 471 days old. Analysis of proximate composition yielded an overall mean (+/- s.d.) of 30.82 +/- 9.84% lipid, 56.97 +/- 9.96% water, 9.97 +/- 2.52% protein, and 0.88 +/- 0.25% ash. Milk fat content increased during lactation and was inversely proportional to water content. There was a significant difference between the lipid content of milk collected during the first half of lactation (<250 days, range 1-120 days) (26.1 +/- 8.7%, n = 35) and that collected during the second half of lactation (>250 days, range 314-469 days) (39.1 +/- 5.5%, n = 12) (Mann-Whitney U-test, P < 0.0001). The relatively low lipid (energy) content of Australian sea lion milk is postulated to be, in part, an adaptive response to living in a low-energy marine environment where the rate of energy transfer from mother to young is decreased and the duration of maternal dependence of the young is increased.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molting phenology of a lacustrine ringed seal, Pusa hispida saimensis;Ecology and Evolution;2022-08

2. Relationship between the female attendance pattern and pup growth rate in the South American sea lion (Carnivora);Scientia Marina;2021-06-11

3. The Enigmatic Life History of the Australian Sea Lion;Ethology and Behavioral Ecology of Otariids and the Odobenid;2021

4. Lactation Strategies and Milk Composition in Pinnipeds;Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization;2020-01-22

5. Adapted to change: Low energy requirements in a low and unpredictable productivity environment, the case of the Galapagos sea lion;Deep Sea Research Part II: Topical Studies in Oceanography;2017-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3