Hydrogen in Australian natural gas: occurrences, sources and resources

Author:

Boreham Christopher J.,Edwards Dianne S.,Czado Krystian,Rollet Nadege,Wang Liuqi,van der Wielen Simon,Champion David,Blewett Richard,Feitz Andrew,Henson Paul A.

Abstract

Natural or native molecular hydrogen (H2) can be a major component in natural gas, and yet its role in the global energy sector’s usage as a clean energy carrier is not normally considered. Here, we update the scarce reporting of hydrogen in Australian natural gas with new compositional and isotopic analyses of H2 undertaken at Geoscience Australia. The dataset involves ~1000 natural gas samples from 470 wells in both sedimentary and non-sedimentary basins with reservoir rocks ranging in age from the Neoarchean to Cenozoic. Pathways to H2 formation can involve either organic matter intermediates and its association with biogenic natural gas or chemical synthesis and its presence in abiogenic natural gas. The latter reaction pathway generally leads to H2-rich (>10mol% H2) gas in non-sedimentary rocks. Abiogenic H2 petroleum systems are described within concepts of source–migration–reservoir–seal but exploration approaches are different to biogenic natural gas. Rates of abiogenic H2 generation are governed by the availability of specific rock types and different mineral catalysts, and through chemical reactions and radiolysis of accessible water. Hydrogen can be differently trapped compared to hydrocarbon gases; for example, pore space can be created in fractured basement during abiogenic reactions, and clay minerals and evaporites can act as effective adsorbents, traps and seals. Underground storage of H2 within evaporites (specifically halite) and in depleted petroleum reservoirs will also have a role to play in the commercial exploitation of H2. Estimated H2 production rates mainly from water radiolysis in mafic–ultramafic and granitic rocks and serpentinisation of ultramafic–mafic rocks gives a H2 inferred resource potential between ~1.6 and ~58MMm3 year−1 for onshore Australia down to a depth of 1km. The prediction and subsequent identification of subsurface H2 that can be exploited remains enigmatic and awaits robust exploration guidelines and targeted drilling for proof of concept.

Publisher

CSIRO Publishing

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3