Analysis of within- and between-day chlorophyll-a dynamics in Mantua Superior Lake, with a continuous spectroradiometric measurement

Author:

Bresciani M.,Rossini M.,Morabito G.,Matta E.,Pinardi M.,Cogliati S.,Julitta T.,Colombo R.,Braga F.,Giardino C.

Abstract

Eutrophic lakes display unpredictable patterns of phytoplankton growth, distribution, vertical and horizontal migration, likely depending on environmental conditions. Monitoring chlorophyll-a (Chl-a) concentration provides reliable information on the dynamics of primary producers if monitoring is conducted frequently. We present a practical approach that allows continuous monitoring of Chl-a concentration by using a radiometric system that measures optical spectral properties of water. We tested this method in a shallow, nutrient-rich lake in northern Italy, the Mantua Superior Lake, where the radiometric system collected data all throughout the day (i.e. every 5 min) for ~30 days. Here, specifically developed algorithms were used to convert water reflectance to Chl-a concentration. The best performing algorithm (R2 = 0.863) was applied to a larger dataset collected in September 2011. We characterised intra- and inter-daily Chl-a concentration dynamics and observed a high variability; during a single day, Chl-a concentration varied from 20 to 130 mg m–3. Values of Chl-a concentration were correlated with meteo-climatic parameters, showing that solar radiance and wind speed are key factors regulating the daily phytoplankton growth and dynamics. Such patterns are usually determined by vertical migration of different phytoplankton species within the water column, as well as by metabolic adaptations to changes in light conditions.

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3