Production and binding of endothelin-2 (EDN2) in the rat ovary: endothelin receptor subtype A (EDNRA)-mediated contraction

Author:

Bridges Phillip J.,Jo Misung,Al Alem Linah,Na Giyoun,Su Wen,Gong Ming C.,Jeoung Myoungkun,Ko CheMyong

Abstract

Endothelin-2 (EDN2)-mediated contraction has been proposed as a final mechanical signal facilitating ovulation. The objectives herein were to determine (1) whether ovarian endothelins were increased before ovulation; (2) whether a specific endothelin-converting enzyme (ECE) was mediating their production; (3) which receptor was facilitating ovarian contraction; and (4) whether receptor-specific antagonism affected ovulation. Follicular development was induced in immature rats with 10 IU pregnant mare serum gonadotrophin (PMSG) and the ovulatory cascade was initiated 48 h later with 10 IU human chorionic gonadotrophin (hCG). In Experiment 1, an immunoassay revealed that the ovarian concentration of endothelin peptide was increased 7-fold 12 h after hCG when compared with 48 h after PMSG (P < 0.05). In Experiment 2, real-time PCR indicated that mRNA for Ece1, but not Ece2, was increased in granulosa cells collected 12 h after hCG when compared with those collected before the ovulatory stimulus (P < 0.05). In Experiment 3, isometric tension analysis revealed that the contractile effect of EDN2 was mediated by endothelin receptor A (EDNRA), not B (EDNRB). In Experiment 4, no effect was observed on the rate of ovulation when rats were treated with an antagonist specific to EDNRA (BQ123) or EDNRB (BQ788), or when mice were treated with BQ123, BQ788 or BQ123 + BQ788. In conclusion, endothelin peptide is produced before ovulation and the contractile action of EDN2 within the ovary is facilitated via EDNRA. In addition, findings of this study indicate synergistic interactions among contractile factors affect ovulatory outcome, while the role of EDNRB alone in the process of ovulation requires further investigation.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3