Estimation of surface dead fine fuel moisture using automated fuel moisture sticks across a range of forests worldwide

Author:

Cawson Jane G.ORCID,Nyman Petter,Schunk Christian,Sheridan Gary J.ORCID,Duff Thomas J.,Gibos Kelsy,Bovill William D.,Conedera Marco,Pezzatti Gianni B.,Menzel Annette

Abstract

Field measurements of surface dead fine fuel moisture content (FFMC) are integral to wildfire management, but conventional measurement techniques are limited. Automated fuel sticks offer a potential solution, providing a standardised, continuous and real-time measure of fuel moisture. As such, they are used as an analogue for surface dead fine fuel but their performance in this context has not been widely evaluated. We assessed the ability of automated fuel sticks to predict surface dead FFMC across a range of forest types. We combined concurrent moisture measurements of the fuel stick and surface dead fine fuel from 27 sites (570 samples), representing nine broad forest fuel categories. We found a moderate linear relationship between surface dead FFMC and fuel stick moisture for all data combined (R2=0.54), with fuel stick moisture averaging 3-fold lower than surface dead FFMC. Relationships were typically stronger for individual forest fuel categories (median R2=0.70; range=0.55–0.87), suggesting the sticks require fuel-specific calibration for use as an analogue of surface dead fine fuel. Future research could identify fuel properties that will enable more generalised calibration functions.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3