Author:
Reddy Sirish K.,Cramer Neil B.,Kalvaitas Michael,Lee Tai Yeon,Bowman Christopher N.
Abstract
Ternary thiol–vinyl polymerizations offer a unique platform for improved control over polymerization kinetics and network properties as compared to both binary thiol–vinyl systems and traditional (meth)acrylic systems. Therefore, this study seeks to improve the fundamental understanding of the complex ternary thiol–vinyl systems to enable enhanced control over polymerization kinetics, network evolution, and, ultimately, network properties. The polymerization kinetics and material properties afforded by thiol–triazine–methacrylate systems are investigated. The ternary kinetics are successfully predicted by understanding the reaction mechanisms of the corresponding binary components. In ternary thiol–ene–(meth)acrylate systems, the variation in stoichiometric ratios of thiol and ene does not significantly impact material properties as in thiol–ene- or thiol–(meth)acrylate systems. Further, the ternary systems also provide unique polymer properties such as high glass transition temperature with narrow transition widths.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献