Description of a coupled atmosphere - fire model

Author:

Clark Terry L.,Coen Janice,Latham Don

Abstract

This paper describes a coupled fire–atmosphere model that uses a sophisticated high-resolution non-hydrostatic numerical mesoscale model to predict the local winds which are then used as input to the prediction of fire spread. The heat and moisture fluxes from the fire are then fed back to the dynamics, allowing the fire to influence its own mesoscale winds that in turn affect the fire behavior. This model is viewed as a research model and as such requires a fireline propagation scheme that systematically converges with increasing spatial and temporal resolution. To achieve this, a local contour advection scheme was developed to track the fireline using four tracer particles per fuel cell, which define the area of burning fuel. Using the dynamically predicted winds along with the terrain slope and fuel characteristics, algorithms from the BEHAVE system are used to predict the spread rates. A mass loss rate calculation, based on results of the BURNUP fuel burnout model, is used to treat heat exchange between the fire and atmosphere. Tests were conducted with the uncoupled model to test the fire-spread algorithm under specified wind conditions for both spot and line fires. Using tall grass and chaparral, line fires were simulated employing the full fire–atmosphere coupling. Results from two of these experiments show the effects of fire propagation over a small hill. As with previous coupled experiments, the present results show a number of features common to real fires. For example, we show how the well-recognized elliptical fireline shape is a direct result of fire–atmosphere interactions that produce the ‘heading’, ‘flanking’, and ‘backing’ regions of a wind-driven fire with their expected behavior. And, we see how perturbations upon this shape sometimes amplify to become fire whirls along the flanks, which are transported to the head of the fire where they may interact to produce erratic fire behavior.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3