Auroral Contribution to Sky Brightness for Optical Astronomy on the Antarctic Plateau

Author:

Dempsey J. T.,Storey J. W. V.,Phillips A.

Abstract

AbstractThe Antarctic Plateau holds great promise for optical astronomy. One relatively unstudied feature of the polar night sky for optical astronomical observing is the potential contamination of observations by aurorae. In this study we analyse auroral measurements at South Pole Station and show that during an average winter season, the auroral contribution to the B band sky brightness is below 21.9 B mag arcsec−2 for 50% of the observing time. In V band, the median sky brightness contribution is 20.8 mag arcsec−2 during an average winter. South Pole Station is situated within the auroral zone and experiences strong and frequent auroral activity. The Antarctic locations of Dome C and Dome A are closer to the geomagnetic pole where auroral activity is greatly reduced compared with that of South Pole Station. Calculations based on satellite measurements of electron flux above the Antarctic Plateau are used to show that at Dome C, the contribution to sky background in the B and V bands is up to 3.1 mag less than that at the South Pole. The use of notch filters to reduce the contribution from the strongest auroral emission lines and bands is also discussed. The scientific potential of an extremely large telescope located at Dome C is discussed, with reference to the effect that auroral emissions would have on particular astronomical observations.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference29 articles.

1. Brightness of the night sky over La Palma

2. Trondsen T. S. 1998, PhD Thesis, University of Tromso, Norway

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accuracy in starphotometry;Atmospheric Measurement Techniques;2021-10-12

2. Cloud cover and aurora contamination at dome A in 2017 from KLCAM;Monthly Notices of the Royal Astronomical Society;2020-12-14

3. Atmospheric Cherenkov Telescopes as a potential veto array for neutrino astronomy;Astroparticle Physics;2020-01

4. The Pale Green Dot: A Method to Characterize Proxima Centauri b Using Exo-Aurorae;The Astrophysical Journal;2017-03-03

5. Transiting planet candidates with ASTEP 400 at Dome C, Antarctica;Monthly Notices of the Royal Astronomical Society;2016-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3