Relationships among burn severity, forest canopy structure and bat activity from spring burns in oak–hickory forests

Author:

Lacki Michael J.,Dodd Luke E.,Skowronski Nicholas S.,Dickinson Matthew B.,Rieske Lynne K.

Abstract

The extent to which prescribed fires affect forest structure and habitats of vertebrate species is an important question for land managers tasked with balancing potentially conflicting objectives of vegetation and wildlife management. Many insectivorous bats forage for insect prey in forested habitats, serving as the primary predators of nocturnal forest insects, and are potentially affected by structural changes in forests resulting from prescribed fires. We compared forest-stand characteristics of temperate oak–hickory forests, as measured with airborne laser scanning (light detection and ranging, LiDAR), with categorical estimates of burn severity from prescribed fires as derived from Landsat data and field-based Composite Burn Indices, and used acoustic monitoring to quantify activity of insectivorous bats in association with varying degrees of burn severity (unburned habitat, low severity and medium severity). Forest-stand characteristics showed greatest separation between low-severity and medium-severity classes, with gap index, i.e. open-air space, increasing with degree of burn severity. Greater mid-storey density, over-storey density and proportion of vegetation in the understorey occurred in unburned habitat. Activity of bats did not differ with burn severity for high-frequency (clutter-adapted or closed-space foragers) or low-frequency (edge or open-space foragers) bats. Results indicate that differing degrees of burn severity from prescribed fires produced spatial variation in canopy structure within stands; however, bats demonstrated no shifts in activity levels to this variation in canopy structure, suggesting prescribed fire during the dormant season, used as a management practice targeting desired changes in vegetation, is compatible with sustaining foraging habitat of insectivorous bats.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3