A lysimeter study of the impact of cow urine, dairy shed euent, and nitrogen fertiliser on nitrate leaching

Author:

Silva R. G.,Cameron K. C.,Di H. J.,Hendry T.

Abstract

The effect of cow urine, dairy shed effluent (DE), and urea fertiliser on nitrate leaching was determined using undisturbed soil lysimeters (500 mm diameter by 700 mm deep) with ryegrass (Lolium perenne)–white clover (Trifolium repens) pasture. Cow urine was applied to the lysimeters, at rates of 0 and 1000 kg N/ha in May 1996. Urea and DE were applied to urine-applied and non-urine-applied lysimeters at rates of 0, 200, and 400 kg N/ha in 4 split equal applications in May, August, and November 1996 and February 1997. Natural rainfall was supplemented with simulated rainfall in winter and spring (May–October) to achieve the 75th percentile of winter–spring rainfall records in the region. Flood irrigation was applied 6 times during summer–autumn (November–April) at 100 mm per application, which is a typical practice used by dairy farmers in the region. Drainage water was collected and analysed for nitrate, nitrite, bromide (added tracer), and ammonium. Over the first year of the experiment (May 1996–April 1997), 12% of the urine-N applied was lost through leaching, mainly in nitrate form. When urine (1000 kg N/ha) was applied in combination with DE (200 kg N/ha) and urea (200 kg N/ha), the mineral N leaching loss increased to 14% of the total N applied. The annual average nitrate concentrations in the drainage from the lysimeters that received urine alone, or urine+DE and/or urea, were 33–57 mg N/L, with a mean peak concentration of 110 mg N/L. These nitrate concentrations were significantly higher than in those treatments that did not receive urine (1–5 mg N/L). Because, on average, about 25% of the area of a grazed dairy paddock receives urine per year, the field-scale leaching losses were calculated by taking into account the dilution effect of drainage water from non-urine patch areas of the paddock. The calculated annual paddock losses were 33–60 kg N/ha, and on average the annual paddock nitrate concentrations were 10–17 mg N/L. This demonstrates the importance of accounting for the dilution of nitrate in the leachate from non-urine patch areas of the paddock. The annual average concentration from the treatment DE at 400 kg N/ha was significantly lower than that from the urea treatment at the same rate. This was probably because of the different chemical forms of N in each material, and needs to be taken into account when developing regional rules for land application of urea and effluents.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3