Pyrolysis of Methane to Higher Hydrocarbons: A Thermodynamic Study

Author:

Larkins FP,Khan AZ

Abstract

Some basic thermodynamic parameters such as Gibbs free energies, enthalpies of reactions and equilibrium compositions of products from the pyrolysis and partial oxidation of methane to higher hydrocarbons in the gas phase have been determined within a consistent framework for the temperature range 800-1500 K and the pressure range 0.1-3 MPa , by using the CSIRO-SGTE THERMODATA system. It has been established that the pyrolysis of methane to higher hydrocarbons, e.g. acetylene, ethylene, ethane, prop-1-ene, propane, benzene, toluene, naphthalene, 1-methylnaphthalene and 2-methylnaphthalene, considered as separate reactions, is a highly endothermic reaction with the Gibbs free energies for the individual reactions being positive until 1300 K. The aromatics are thermodynamically most favoured with the equilibrium yields increasing with temperature. Addition of O2 lowers the heats of synthesis and the free energies for methane conversion but no enhancement in the equilibrium yields of hydrocarbons is observed. When solid carbon is allowed, it is the dominant product in all cases with the equilibrium yields for all hydrocarbons becoming negligible. Increasing the pressure at a particular temperature has more effect on the lowering of the equilibrium conversion of methane than on the suppression of solid carbon. Such data are valuable for understanding the conversion limits for methane into higher hydrocarbons.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3