Optimising the linear electron transport rate measured by chlorophyll a fluorescence to empirically match the gross rate of oxygen evolution in white light: towards improved estimation of the cyclic electron flux around photosystem I in leaves

Author:

Zhang Meng-Meng,Fan Da-Yong,Sun Guang-Yu,Chow Wah Soon

Abstract

The cyclic electron flux (CEF) around photosystem I (PSI) was discovered in isolated chloroplasts more than six decades ago, but its quantification has been hampered by the absence of net formation of a product or net consumption of a substrate. We estimated in vivo CEF in leaves as the difference (ΔFlux) between the total electron flux through PSI (ETR1) measured by a near infrared signal, and the linear electron flux through both photosystems by optimised measurement of chlorophyll a fluorescence (LEFfl). Chlorophyll fluorescence was excited by modulated green light from a light-emitting diode at an optimal average irradiance, and the fluorescence was detected at wavelengths >710 nm. In this way, LEFfl matched the gross rate of oxygen evolution multiplied by 4 (LEFO2) in broad-spectrum white actinic irradiance up to half (spinach, poplar and rice) or one third (cotton) of full sunlight irradiance. This technique of estimating CEF can be applied to leaves attached to a plant.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3