Adsorption of trace metals by microplastic pellets in fresh water

Author:

Turner Andrew,Holmes Luke A.

Abstract

Environmental context Although microplastics are known to adsorb and transport contaminants in the aquatic environment, there is no information on the significance of the effect in fresh waters. We studied the adsorption of metals to new and aged plastic pellets in river water, and show interactions that are dependent on time, pH and metal concentration. Because metals have a higher affinity for aged pellets than for new pellets, weathered microplastics could represent a significant vehicle for the transport of metals in aquatic environments. Abstract Adsorption of trace metals (Ag, Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn) to new (virgin) and aged (beached) plastic production pellets suspended in river water (pH ~ 6.5) has been studied under laboratory conditions. Over a 7-day period, reaction kinetics largely conformed to a pseudo-first-order reversible mechanism with forward rate constants that were typically at least an order of magnitude greater for beached pellets than virgin pellets. Adsorption isotherms were defined by a linear model in many cases, with maximum distribution coefficients of ~6mL g–1 for virgin pellets (Hg and Pb) and of the order of 102mLg–1 for beached pellets (Ag and Pb). However, more significant fits to the data were obtained using Freundlich or Langmuir models with adsorption constants that were orders of magnitude greater for beached pellets than virgin pellets and, regarding the former, that were greatest for Ag, Hg and Pb. Increasing pH of river water resulted in an increase in adsorption of Ag, Cd, Co, Ni, Pb and Zn, a reduction in adsorption of Cr and no clear trend for Cu or Hg, and adsorption was always greater to beached pellets than virgin pellets. The ability of pellets to adsorb metals was attributed to the modification of the surface through the attachment of organic matter during the experiments and, with regard to beached pellets, their long-term pre-modification through photooxidation and attrition of charged material. Interactions at the pellet surface likely involve metal cations, oxyanions (HCrO4–/CrO42–) and organic complexes.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3