Contribution of the cotton irrigation network to farm nitrous oxide emissions

Author:

Macdonald B. C. T.,Nadelko A.,Chang Y.,Glover M.,Warneke S.

Abstract

Nitrous oxide (N2O) is a potent greenhouse gas, and agriculture is the dominant source of N2O-N emissions. The Australian cotton industry requires high inputs of N to maintain high lint quality and yields; however, over-fertilisation with N is symptomatic of the industry. Up to 3.5% of N fertiliser applied is lost directly from cotton fields as N2O gas. Excess N may also be lost via erosion, deep-drainage, leaching and runoff, and may subsequently form indirect N2O emissions. The estimate by the Intergovernmental Panel on Climate Change (IPCC) suggests that 0.0025kg N2O-N is produced indirectly from groundwater and surface drainage for each kg N lost via runoff and leaching, although this estimate carries a large degree of uncertainty. This study is the first to address the lack of indirect N2O emission data from irrigated cotton-farming systems. Indirect emissions were determined from total N concentrations in irrigation runoff by using the IPCC emission factor and from measurements of dissolved N2O during the first four irrigations (October–December 2013). Total indirect N2O emissions from the surface of the irrigation network over 3 months when estimated by the dissolved-N2O method were 0.503±0.339kgha–1. By contrast, N2O emissions estimated by the IPCC methodology were 0.843±0.022kgha–1 irrigation surface area. Over the same period of measurement, direct land-surface emissions were 1.44kgN2O-Nha–1 field. Despite relatively high emissions per surface area, the irrigation network is only a minor component of the total farm area, and indirect emissions from the irrigation system contribute ~2.4–4% of the total N2O emissions and <0.02% of the applied N fertiliser.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3