The symbiotic rumen microbiome and cattle performance: a brief review

Author:

Bath C.,Morrison M.,Ross E. M.,Hayes B. J.,Cocks B. G.

Abstract

The rumen of the dairy cow contains a rich and diverse collection of microbes that during feed digestion produce significant quantities of methane gas and ammonia, both of which contribute to greenhouse gas emissions. Strategies to redirect rumen carbon and nitrogen metabolism away from these products provide opportunities for significant productivity improvements in livestock systems not only by improving nutrient retention, but also by reducing greenhouse gas emissions. In order to develop these strategies, a greater knowledge of the diversity of the microbes within their rumen and their genomic capability is required. Many have used several techniques to study the rumen microbes, and the technology continues to improve. Among them include researchers at the Department of Primary Industries Victoria (DPI Vic) and the Dairy Futures Cooperative Research Centre (CRC) who are addressing the issue of regulation of methane emissions in dairy cattle, while scientists in Queensland and New South Wales, as part of the most recent Beef CRC program, focus on beef cattle. In this brief review, we examine how the techniques used in rumen microbial ecology have changed, and how technology improvements continue to allow us to examine the rumen microbiota of cattle and other ruminants, so as to better understand and possibly select animals with superior traits, leading to improvements in feed efficiency, methane emissions and nitrogen retention.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3