Contrasting responses by respiration to elevated CO2 in intact tissue and isolated mitochondria

Author:

Bruhn Dan,Wiskich Joseph T.,Atkin Owen K.

Abstract

The question of whether elevated concentrations of CO2 directly inhibit mitochondrial respiration in plants has received considerable attention. Although there is a growing consensus that elevated [CO2] rarely inhibits respiration of intact tissues, past studies have reported that elevated [CO2] does impact on O2 uptake in isolated mitochondria; what remains unclear, however, is the site(s) where elevated [CO2] impacts on mitochondrial electron transport (ETC). Here we investigated direct effects of [CO2] on respiratory activity of ETC enzymes, intact mitochondria and whole tissues using potato tubers (Solanum tuberosum L. cv. Desiree). Plots of O2 uptake against the redox poise of the ubiquinone (UQ) pool in isolated mitochondria were used to determine whether elevated [CO2] inhibits UQ-reducing and UQ-oxidising pathways differentially. Our results show that mitochondrial respiration was more inhibited via [CO2]/[HCO3–] effects on cytochrome c oxidase (COX) than on succinate dehydrogenase, with [HCO3–] rather than [CO2] inhibiting COX. However, the inhibitory effects at the mitochondrial level did not translate into inhibitory effects at the tissue level. Alternative oxidase (AOX) activity is normally absent in young potato tubers, as was the case in the present study. Thus, the lack of CO2-mediated inhibition at the tissue level was not the result of increases in AOX activity masking the effects of CO2 elsewhere in the respiratory system. We discuss whether the direct impact of elevated [CO2] on respiration is dependent on the rate of metabolic activity and flux control coefficients in individual tissues.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3