Cationic Biocides Tend to Embed into the Inner Layer of the Model Outer Membrane Vesicles of Gram-negative Bacteria: Computational Insights

Author:

Kholina E.G.,Kovalenko I.B.,Strakhovskaya M.G.

Abstract

The outer membrane vesicles (OMVs), produced by many pathogenic bacteria, play a significant role in bacterial pathogenesis. They promote bacterial resistance to antibiotics and act as natural protective barriers. The study of OMVs is essential both for understanding the general mechanisms of bacterial pathogenicity and for the development of the antibacterial drugs. In this paper, we created model vesicle that imitate the OMVs of Gram-negative bacteria using molecular modeling techniques. To investigate the interaction of the cationic antimicrobial compounds with the outer lipopolysaccharide (LPS) monolayer and the inner phospholipid monolayer of the OMV membrane, we performed molecular dynamics simulations by placing molecules of the cationic antiseptic octenidine on the outside or inside of model vesicles. The interaction of octenidine with the outer and inner monolayer was significantly different: octenidine interacted weakly with the outer LPS surface of the model OMV, but exhibited high affinity for the phospholipids of the inner monolayer. To study the translocation of cationic antimicrobial molecules within model OMV, we performed steered molecular dynamics simulations. For all three cationic biocide molecules, antiseptic octenidine, photosensitizer octakis(cholinyl)zinc phthalocyanine, and dye methylene blue, it turned out that, along with the LPS of the outer membrane of the OMV, the phosphates of lipid A molecules represent the final barrier to their penetration into the model OMV.

Publisher

Institute of Mathematical Problems of Biology of RAS (IMPB RAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3