285 nm AlGaN-BASED DEEP-ULTRAVIOLET LED WITH HIGH INTERNAL QUANTUM EFFICIENCY: COMPUTATIONAL DESIGN

Author:

ALP İrem1ORCID,ÖNER Bilgehan Barış2ORCID,EROĞLU Esra3ORCID

Affiliation:

1. Gazı University

2. GAZI UNIVERSITY

3. Orta Doğu Teknik Üniversitesi

Abstract

In this paper, the systematic computational design process of AlGaN-based multiple quantum-well (QW) deep-ultraviolet (DUV) light-emitting diode (LED) grown on sapphire (Al2O3) substrate was investigated. An optimization was held to increase internal quantum efficiency (IQE) handling the LED parameters such as doping percentage of the n- and the p-type layers of these devices. The structure parameters of the best design were determined through a customized genetic algorithm integrated into the nanostructure quantum electronic simulation (nextnano). As a determining factor, IQE was obtained to be 24% for the devised 285 nm LED. It has been demonstrated that this result can be increased up to a remarkably high value of 70% by a low threading dislocation density (TDD) and reduced Auger recombination. In addition, the operation input power and potential difference were successfully kept below 0.1 W/mm2 and 5.05 V, respectively.

Publisher

Kütahya Dumlupinar Üniversitesi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3