Affiliation:
1. MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, United Kingdom;
2. Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge CB1 8RN, United Kingdom
Abstract
An observational correlation between a suspected risk factor and an outcome does not necessarily imply that interventions on levels of the risk factor will have a causal impact on the outcome (correlation is not causation). If genetic variants associated with the risk factor are also associated with the outcome, then this increases the plausibility that the risk factor is a causal determinant of the outcome. However, if the genetic variants in the analysis do not have a specific biological link to the risk factor, then causal claims can be spurious. We review the Mendelian randomization paradigm for making causal inferences using genetic variants. We consider monogenic analysis, in which genetic variants are taken from a single gene region, and polygenic analysis, which includes variants from multiple regions. We focus on answering two questions: When can Mendelian randomization be used to make reliable causal inferences, and when can it be used to make relevant causal inferences?
Subject
Genetics (clinical),Genetics,Molecular Biology
Cited by
198 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献