The Virtual Physiological Human: Ten Years After

Author:

Viceconti Marco1,Hunter Peter2

Affiliation:

1. Department of Mechanical Engineering and Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield S1 3JD, United Kingdom;

2. Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand

Abstract

Biomedical research and clinical practice are struggling to cope with the growing complexity that the progress of health care involves. The most challenging diseases, those with the largest socioeconomic impact (cardiovascular conditions; musculoskeletal conditions; cancer; metabolic, immunity, and neurodegenerative conditions), are all characterized by a complex genotype–phenotype interaction and by a “systemic” nature that poses a challenge to the traditional reductionist approach. In 2005 a small group of researchers discussed how the vision of computational physiology promoted by the Physiome Project could be translated into clinical practice and formally proposed the term Virtual Physiological Human. Our knowledge about these diseases is fragmentary, as it is associated with molecular and cellular processes on the one hand and with tissue and organ phenotype changes (related to clinical symptoms of disease conditions) on the other. The problem could be solved if we could capture all these fragments of knowledge into predictive models and then compose them into hypermodels that help us tame the complexity that such systemic behavior involves. In 2005 this was simply not possible—the necessary methods and technologies were not available. Now, 10 years later, it seems the right time to reflect on the original vision, the results achieved so far, and what remains to be done.

Publisher

Annual Reviews

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital twins in healthcare: Applications, technologies, simulations, and future trends;WIREs Data Mining and Knowledge Discovery;2024-09-06

2. GPT-4 as a biomedical simulator;Computers in Biology and Medicine;2024-08

3. Computational Fluid Dynamics in Cardiovascular Engineering: A Comprehensive Review;Transactions of the Indian National Academy of Engineering;2024-05-07

4. Digital twins in medicine;Nature Computational Science;2024-03-26

5. Position Paper From the Digital Twins in Healthcare to the Virtual Human Twin: A Moon-Shot Project for Digital Health Research;IEEE Journal of Biomedical and Health Informatics;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3