Astrochemistry During the Formation of Stars

Author:

Jørgensen Jes K.1,Belloche Arnaud1,Garrod Robin T.1

Affiliation:

1. Niels Bohr Institute, University of Copenhagen, 1350 Copenhagen, Denmark;

Abstract

Star-forming regions show a rich and varied chemistry, including the presence of complex organic molecules—in both the cold gas distributed on large scales and the hot regions close to young stars where protoplanetary disks arise. Recent advances in observational techniques have opened new possibilities for studying this chemistry. In particular, the Atacama Large Millimeter/submillimeter Array has made it possible to study astrochemistry down to Solar System–size scales while also revealing molecules of increasing variety and complexity. In this review, we discuss recent observations of the chemistry of star-forming environments, with a particular focus on complex organic molecules, taking context from the laboratory experiments and chemical models that they have stimulated. The key takeaway points include the following: ▪  The physical evolution of individual sources plays a crucial role in their inferred chemical signatures and remains an important area for observations and models to elucidate. ▪  Comparisons of the abundances measured toward different star-forming environments (high-mass versus low-mass, Galactic Center versus Galactic disk) reveal a remarkable similarity, which is an indication that the underlying chemistry is relatively independent of variations in their physical conditions. ▪  Studies of molecular isotopologues in star-forming regions provide a link with measurements in our own Solar System, and thus may shed light on the chemical similarities and differences expected in other planetary systems.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3