Particle-Resolved Direct Numerical Simulation for Gas-Solid Flow Model Development

Author:

Tenneti Sudheer1,Subramaniam Shankar1

Affiliation:

1. Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011;

Abstract

Gas-solid flows in nature and industrial applications are characterized by multiscale and nonlinear interactions that manifest as rich flow physics and pose unique modeling challenges. In this article, we review particle-resolved direct numerical simulation (PR-DNS) of the microscale governing equations for understanding gas-solid flow physics and obtaining quantitative information for model development. A clear connection between a microscale realization and meso/macroscale representation is necessary for PR-DNS to be used effectively for model development at the meso- and macroscale. Furthermore, the design of PR-DNS must address the computational challenges of parameterizing models in a high-dimensional parameter space and obtaining accurate statistics of flow properties from a finite number of realizations at acceptable grid resolution. This review also summarizes selected recent insights into the physics of momentum, kinetic energy, and heat transfer in gas-solid flows obtained from PR-DNS. Promising future applications of PR-DNS include the study of the effect of number fluctuations on hydrodynamics, instabilities in gas-solid flow, and wall-bounded flows.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 256 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3