The Jamming Transition and the Marginally Jammed Solid

Author:

Liu Andrea J.1,Nagel Sidney R.2

Affiliation:

1. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104;

2. The James Franck Institute, The University of Chicago, Chicago, Illinois 60637;

Abstract

When a system jams, it undergoes a transition from a flowing to a rigid state. Despite this important change in the dynamics, the internal structure of the system remains disordered in the solid as well as the fluid phase. In this way jamming is quite different from crystallization, the other common way in which a fluid solidifies. Jamming is a paradigm for thinking about how many different types of fluids—from molecular liquids to macroscopic granular matter—develop rigidity. Here we review recent work on the jamming transition. We start with perhaps the simplest model: frictionless spheres interacting via repulsive finite-range forces at zero temperature. In this highly idealized case, the transition has aspects of both first- and second-order transitions. From studies of the normal modes of vibration for the marginally jammed solid, new physics has emerged for how a material can be rigid without having the elastic properties of a normal solid. We first survey the simulation data and theoretical arguments that have been proposed to understand this behavior. We then review work that has systematically gone beyond the ideal model to see whether the scenario developed there is more generally applicable. This includes work that examines the effect of nonspherical particles, friction, and temperature on the excitations and the dynamics. We briefly touch on recent laboratory experiments that have begun to make contact with simulations and theory.

Publisher

Annual Reviews

Subject

Condensed Matter Physics,General Materials Science

Cited by 668 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3