Affiliation:
1. Department of Physics, Columbia University, New York, New York 10027;,
Abstract
The elementary excitations of monolayer graphene, which behave as massless Dirac particles, make it a fascinating venue in which to study relativistic quantum phenomena. One notable example is Klein tunneling, a phenomena in which electrons convert to holes to tunnel through a potential barrier. However, the omnipresence of charged impurities in substrate-supported samples keep the overall charge distribution nonuniform, obscuring much of this “Dirac” point physics in large samples. Using local gates, one can create tunable heterojunctions in graphene, isolating the contribution of small regions of the samples to transport. In this review, we give an overview of quantum transport theory and experiment on locally gated graphene heterostructures, with an emphasis on bipolar junctions.
Subject
Condensed Matter Physics,General Materials Science
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献