Quantum-State Control and Manipulation of Paramagnetic Molecules with Magnetic Fields

Author:

Heazlewood Brianna R.1

Affiliation:

1. Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;

Abstract

Since external magnetic fields were first employed to deflect paramagnetic atoms in 1921, a range of magnetic field–based methods have been introduced to state-selectively manipulate paramagnetic species. These methods include magnetic guides, which selectively filter paramagnetic species from all other components of a beam, and magnetic traps, where paramagnetic species can be spatially confined for extended periods of time. However, many of these techniques were developed for atomic—rather than molecular—paramagnetic species. It has proven challenging to apply some of these experimental methods developed for atoms to paramagnetic molecules. Thanks to the emergence of new experimental approaches and new combinations of existing techniques, the past decade has seen significant progress toward the manipulation and control of paramagnetic molecules. This review identifies the key methods that have been implemented for the state-selective manipulation of paramagnetic molecules—discussing the motivation, state of the art, and future prospects of the field. Key applications include the ability to control chemical interactions, undertake precise spectroscopic measurements, and challenge our understanding of chemical reactivity at a fundamental level.

Publisher

Annual Reviews

Subject

Physical and Theoretical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanical Control of Polaritonic States in Lead Halide Perovskite Phonons Strongly Coupled in THz Microcavity;The Journal of Physical Chemistry Letters;2023-11-09

2. Cold and ultracold molecules in the twenties;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-06

3. Low-Energy Collisions of Zeeman-Decelerated NH Radicals with He Atoms;The Journal of Physical Chemistry A;2023-03-08

4. Design and characterization of a cryogenic linear Paul ion trap for ion–neutral reaction studies;Review of Scientific Instruments;2022-03-01

5. Low-temperature reaction dynamics of paramagnetic species in the gas phase;Chemical Communications;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3