Affiliation:
1. Department of Economics, Università Roma Tre, 00145 Rome, Italy;
Abstract
Forensic science has experienced a period of rapid change because of the tremendous evolution in DNA profiling. Problems of forensic identification from DNA evidence can become extremely challenging, both logically and computationally, in the presence of complicating features, such as in mixed DNA trace evidence. Additional complicating aspects are possible, such as missing data on individuals, heterogeneous populations, and kinship. In such cases, there is considerable uncertainty involved in determining whether or not the DNA of a given individual is actually present in the sample. We begin by giving a brief introduction to the genetic background needed for understanding forensic DNA mixtures, including the artifacts that commonly occur in the DNA amplification process. We then review different methods and software based on qualitative and quantitative information and give details on a quantitative method that uses Bayesian networks as a computational device for efficiently computing likelihoods. This method allows for the possibility of combining evidence from multiple samples to make inference about relationships from DNA mixtures and other more complex scenarios.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献