Affiliation:
1. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2. Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada;
Abstract
The stability and function of many oncogenic mutant proteins depend on heat shock protein 90 (HSP90). This unique activity has inspired the exploration of HSP90 as an anticancer target for over two decades. Unfortunately, while clinical trials of highly optimized HSP90 inhibitors have demonstrated modest benefit for patients with advanced cancers, most commonly stabilization of disease, no HSP90 inhibitor has demonstrated sufficient efficacy to achieve FDA approval to date. This review discusses potential reasons for the limited success of these agents and how our increasingly sophisticated understanding of HSP90 suggests alternative, potentially more effective strategies for targeting it to treat cancers. First, we focus on insights gained from model organisms that suggest a fundamental role for HSP90 in supporting the adaptability and heterogeneity of cancers, key factors underlying their ability to evolve and acquire drug resistance. Second, we examine how HSP90’s role in promoting the stability of mutant proteins might be targeted in genetically unstable tumor cells to reveal their aberrant, foreign proteome to the immune system. Both of these emerging aspects of HSP90 biology suggest that the most effective use of HSP90 inhibitors may not be at high doses with the intent to kill cancer cells, but rather in combination with other molecularly targeted therapies at modest, non-heat shock-inducing exposures that limit the adaptive capacity of cancers.
Subject
Cancer Research,Cell Biology,Oncology
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献