FLEET Velocimetry for Aerodynamics

Author:

Danehy Paul M.1,Burns Ross A.2,Reese Daniel T.1,Retter Jonathan E.2,Kearney Sean P.3

Affiliation:

1. NASA Langley Research Center, Hampton, Virginia, USA;

2. National Institute of Aerospace, Hampton, Virginia, USA

3. Sandia National Laboratories, Albuquerque, New Mexico, USA

Abstract

Long-lasting emission from femtosecond excitation of nitrogen-based flows shows promise as a useful mechanism for a molecular tagging velocimetry instrument. The technique, known as femtosecond laser electronic excitation tagging (FLEET), was invented at Princeton a decade ago and has quickly been adopted and used in a variety of high-speed ground test flow facilities. The short temporal scales offered by femtosecond amplifiers permit nonresonant multiphoton excitation, dissociation, and weak ionization of a gaseous medium near the beam's focus without the generation of a laser spark observed with nanosecond systems. Gated, intensified imaging of the resulting emission enables the tracking of tagged molecules, thereby measuring one to three components of velocity. Effects of local heating and acoustic disturbances can be mitigated with the selection of a shorter-wavelength excitation source. This review surveys the development of FLEET over the decade since its inception, as it has been implemented in several test facilities to make accurate, precise, and seedless velocimetry measurements for studying complex high-speed flows.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3