Behavior Trees in Robot Control Systems

Author:

Ögren Petter1,Sprague Christopher I.1

Affiliation:

1. Division of Robotics, Perception, and Learning, KTH Royal Institute of Technology, Stockholm, Sweden;,

Abstract

In this article, we provide a control-theoretic perspective on the research area of behavior trees in robotics. The key idea underlying behavior trees is to make use of modularity, hierarchies, and feedback in order to handle the complexity of a versatile robot control system. Modularity is a well-known tool to handle software complexity by enabling the development, debugging, and extension of separate modules without detailed knowledge of the entire system. A hierarchy of such modules is natural, since robot tasks can often be decomposed into a hierarchy of subtasks. Finally, feedback control is a fundamental tool for handling uncertainties and disturbances in any low-level control system, but in order to enable feedback control on the higher level, where one module decides what submodule to execute, information regarding the progress and applicability of each submodule needs to be shared in the module interfaces. We describe how these three concepts can be used in theoretical analysis, practical design, and extensions and combinations with other ideas from control theory and robotics. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Publisher

Annual Reviews

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating behavior trees;Robotics and Autonomous Systems;2024-08

2. Knowledge acquisition plans: Generation, combination, and execution;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. Enhancing Autonomous Underwater Vehicle Decision Making through Intelligent Task Planning and Behavior Tree Optimization;Journal of Marine Science and Engineering;2024-05-08

4. Improving the Performance of Learned Controllers in Behavior Trees Using Value Function Estimates at Switching Boundaries;IEEE Robotics and Automation Letters;2024-05

5. Task and Motion Planning for Execution in the Real;IEEE Transactions on Robotics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3