Stability and Control of Power Grids

Author:

Liu Tao1,Song Yue1,Zhu Lipeng12,Hill David J.13

Affiliation:

1. Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China;, ,

2. College of Electrical and Information Engineering, Hunan University, Changsha, China;

3. School of Electrical Engineering and Telecommunications, University of New South Wales, Kensington, New South Wales, Australia

Abstract

Power grids are critical infrastructure in modern society, and there are well-established theories for the stability and control of traditional power grids under a centralized paradigm. Driven by environmental and sustainability concerns, power grids are undergoing an unprecedented transition, with much more flexibility as well as uncertainty brought by the growing penetration of renewable energy and power electronic devices. A new paradigm for stability and control is under development that uses graph-based, data-based, and distributed analysis tools. This article surveys classic and novel results on the stability and control of power grids to provide a perspective on this both old and new subject. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Publisher

Annual Reviews

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3