Affiliation:
1. Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA;,
Abstract
In this review, we present a comprehensive perspective on communication-aware robotics, an area that considers realistic communication environments and aims to jointly optimize communication and navigation. The main focus of the article is theoretical characterization and understanding of performance guarantees. We begin by summarizing the best prediction an unmanned vehicle can have of the channel quality at unvisited locations. We then consider the case of a single robot, showing how it can mathematically characterize the statistics of its traveled distance until connectivity and further plan its path to reach a connected location with optimality guarantees, in real channel environments and with minimum energy consumption. We then move to the case of multiple robots, showing how they can utilize their motions to enable robust information flow. We consider two specific robotic network configurations—robotic beamformers and robotic routers—and mathematically characterize properties of the co-optimum motion–communication decisions.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献