Affiliation:
1. Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey, USA; email: kaichieh@princeton.edu, haiminh@princeton.edu, jfisac@princeton.edu
Abstract
Recent years have seen significant progress in the realm of robot autonomy, accompanied by the expanding reach of robotic technologies. However, the emergence of new deployment domains brings unprecedented challenges in ensuring safe operation of these systems, which remains as crucial as ever. While traditional model-based safe control methods struggle with generalizability and scalability, emerging data-driven approaches tend to lack well-understood guarantees, which can result in unpredictable catastrophic failures. Successful deployment of the next generation of autonomous robots will require integrating the strengths of both paradigms. This article provides a review of safety filter approaches, highlighting important connections between existing techniques and proposing a unified technical framework to understand, compare, and combine them. The new unified view exposes a shared modular structure across a range of seemingly disparate safety filter classes and naturally suggests directions for future progress toward more scalable synthesis, robust monitoring, and efficient intervention.
Reference122 articles.
1. Control barrier function based quadratic programs with application to adaptive cruise control,2014
2. A predictive safety filter for learning-based control of constrained nonlinear dynamical systems;Automatica,2021
3. Hamilton-Jacobi reachability: a brief overview and recent advances,2017
4. Learning control barrier functions from expert demonstrations,2020
5. ISAACS: iterative soft adversarial actor-critic for safety,2023
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献