Biophysical Techniques in Structural Biology

Author:

Dobson Christopher M.1

Affiliation:

1. Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;

Abstract

Over the past six decades, steadily increasing progress in the application of the principles and techniques of the physical sciences to the study of biological systems has led to remarkable insights into the molecular basis of life. Of particular significance has been the way in which the determination of the structures and dynamical properties of proteins and nucleic acids has so often led directly to a profound understanding of the nature and mechanism of their functional roles. The increasing number and power of experimental and theoretical techniques that can be applied successfully to living systems is now ushering in a new era of structural biology that is leading to fundamentally new information about the maintenance of health, the origins of disease, and the development of effective strategies for therapeutic intervention. This article provides a brief overview of some of the most powerful biophysical methods in use today, along with references that provide more detailed information about recent applications of each of them. In addition, this article acts as an introduction to four authoritative reviews in this volume. The first shows the ways that a multiplicity of biophysical methods can be combined with computational techniques to define the architectures of complex biological systems, such as those involving weak interactions within ensembles of molecular components. The second illustrates one aspect of this general approach by describing how recent advances in mass spectrometry, particularly in combination with other techniques, can generate fundamentally new insights into the properties of membrane proteins and their functional interactions with lipid molecules. The third reviewdemonstrates the increasing power of rapidly evolving diffraction techniques, employing the very short bursts of X-rays of extremely high intensity that are now accessible as a result of the construction of free-electron lasers, in particular to carry out time-resolved studies of biochemical reactions. The fourth describes in detail the application of such approaches to probe the mechanism of the light-induced changes associated with bacteriorhodopsin's ability to convert light energy into chemical energy.

Publisher

Annual Reviews

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3