Dynamical Evolution of the Early Solar System

Author:

Nesvorný David1

Affiliation:

1. Department of Space Studies, Southwest Research Institute, Boulder, Colorado 80302, USA;

Abstract

Several properties of the Solar System, including the wide radial spacing of the giant planets, can be explained if planets radially migrated by exchanging orbital energy and momentum with outer disk planetesimals. Neptune's planetesimal-driven migration, in particular, has a strong advocate in the dynamical structure of the Kuiper belt. A dynamical instability is thought to have occurred during the early stages with Jupiter having close encounters with a Neptune-class planet. As a result of the encounters, Jupiter acquired its current orbital eccentricity and jumped inward by a fraction of an astronomical unit, as required for the survival of the terrestrial planets and from asteroid belt constraints. Planetary encounters also contributed to capture of Jupiter Trojans and irregular satellites of the giant planets. Here we discuss the dynamical evolution of the early Solar System with an eye to determining how models of planetary migration/instability can be constrained from its present architecture. Specifically, we review arguments suggesting that the Solar System may have originally contained a third ice giant on a resonant orbit between Saturn and Uranus. This hypothesized planet was presumably ejected into interstellar space during the instability. The Kuiper belt kernel and other dynamical structures in the trans-Neptunian region may provide evidence for the ejected planet. We favor the early version of the instability where Neptune migrated into the outer planetesimal disk within a few tens of millions of years after the dispersal of the protosolar nebula. If so, the planetary migration/instability was not the cause of the Late Heavy Bombardment. Mercury's orbit may have been excited during the instability.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3