Using Triple Isotopes of Dissolved Oxygen to Evaluate Global Marine Productivity

Author:

Juranek L.W.1,Quay P.D.2

Affiliation:

1. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331;

2. School of Oceanography, University of Washington, Seattle, Washington 98195;

Abstract

Since the triple isotopic composition of dissolved O2 (17Δ) was introduced as a natural tracer of photosynthetic gross O2 production (GOP) over 10 years ago, observations of 17Δ have been used to constrain marine productivity throughout the global ocean. This incubation-independent approach has several advantages: It allows the determination of production free from containment artifacts and reduces logistical hurdles that can make obtaining productivity with traditional incubation-dependent methods difficult. As such, GOP estimates derived from 17Δ have been used to give insight into potential biases in incubation-based approaches and to evaluate satellite-based estimates of production at the regional scale. With increased use, we have also learned more about the potential biases and uncertainties of this approach, some of which have been addressed by recent method improvements. We recap the major advances the 17Δ method has brought to improved understanding of biological carbon cycling, from incubation bottles to ocean basins.

Publisher

Annual Reviews

Subject

Oceanography

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3