Studying Plant-Pathogen Interactions in the Genomics Era: Beyond Molecular Koch's Postulates to Systems Biology

Author:

Schneider David J.12,Collmer Alan2

Affiliation:

1. U.S. Department of Agriculture, Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853;

2. Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853;

Abstract

Molecular factors enabling microbial pathogens to cause plant diseases have been sought with increasing efficacy over three research eras that successively introduced the tools of disease physiology, single-gene molecular genetics, and genomics. From this work emerged a unified model of the interactions of biotrophic and hemibiotrophic pathogens, which posits that successful pathogens typically defeat two levels of plant defense by translocating cytoplasmic effectors that suppress the first defense (surface arrayed against microbial signatures) while evading the second defense (internally arrayed against effectors). As is predicted from this model and confirmed by sequence pattern–driven discovery of large repertoires of cytoplasmic effectors in the genomes of many pathogens, the coevolution of (hemi)biotrophic pathogens and their hosts has generated pathosystems featuring extreme complexity and apparent robustness. These findings highlight the need for a fourth research era of systems biology in which virulence factors are studied as pathosystem components, and pathosystems are studied for their emergent properties.

Publisher

Annual Reviews

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3