Steel-Based Composites: Driving Forces and Classifications

Author:

Embury David1,Bouaziz Olivier23

Affiliation:

1. Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada;

2. ArcelorMittal Research, BP 30320, 57283 Maizières-lès-Metz cedex, France;

3. Centre des Matériaux/Mines Paris, Paristech, CNRS-UMR7633, BP 87, 91003 Evry cedex, France

Abstract

In this overview of steel-based composites, consideration is given to conventional metal-matrix composites, in which steel is combined with another metal, ceramic, or polymer. In addition, we define fully steel composites, in which both components of the structure are developed within the steel. These approaches are integrated by discussing a series of macroscopic, mesoscopic, and microscopic examples. This review provides an integrated view of steel composites and allows modeling of the mechanical response to be considered both at the continuum level and in terms of dislocation mechanisms depending on the length scale and the degree of mechanical contrast between the constituent phases. In the context of fully steel composites, consideration is given to static systems in which the volume fraction of the strengthening phase is constant and the length scale is varied by heat treatment or imposed plastic strain. Moreover, we discuss dynamic systems in which a phase transition occurs concomitantly with plastic strain, resulting in an increase in the density of planar barriers that control the plasticity. A discussion of classical works that describe materials such as Damascus steels is used as a template to consider a variety of ways of producing ultrahigh-strength steel composites. Examples of applications are cited and linked to the important issue of developing appropriate fabrication methods for the production of current and future steel composites.

Publisher

Annual Reviews

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3